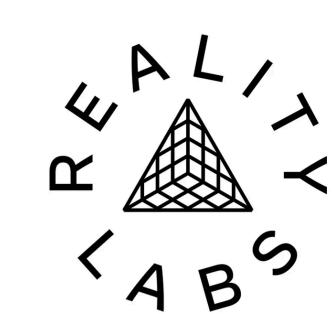


Towards Perception-Informed Latent HRTF Representations

You (Neil) Zhang ^{1,2}, Andrew Francl ², Ruohan Gao ³, Paul Calamia ², Zhiyao Duan ¹, Ishwarya Ananthabhotla ²

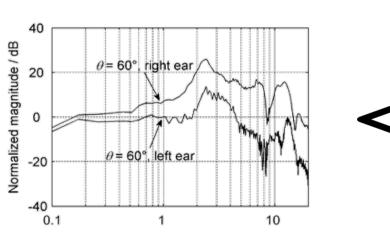


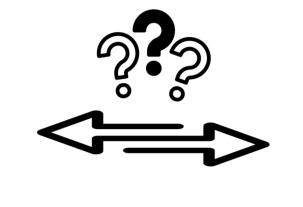
TL;DR

Beyond spectral reconstruction, we learn a perception-informed HRTF latent space by preserving perceptual relations among HRTFs.

Research question:

- We investigate: how well do **existing** learned HRTF representations **preserve** perceptual relations.
- We improve: the latent HRTF representations to align them with human perception.





Proposed solution:

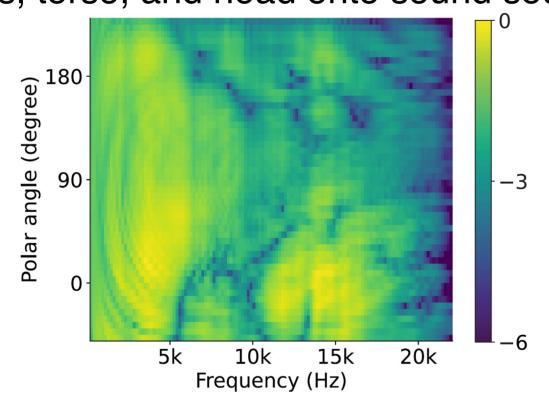
- Perceptual metric-based loss function
- Supervision via Metric Multidimensional Scaling (MMDS)

Application:

HRTF personalization

PRELIMINARIES

Head-related transfer functions (HRTFs) are a set of functions of frequency at different azimuth and elevation angles, describing the spatial filtering effect of the ears, torso, and head onto sound sources.



Spectral distance: Spectral Difference Error (SDE)

$$SDE_k(H, \hat{H}) = \frac{1}{L} \sum_{\theta, \phi} \left| 20 \cdot \log_{10} \left(\frac{H(\theta, \phi, k)}{\hat{H}(\theta, \phi, k)} \right) \right|$$

Computational Auditory Modeling

- Coloration: Predicted Binaural Coloration (PBC) [1]
- Externalization: Auditory Externalization
 Perception (AEP) [2]
- Localization: Difference of Root Mean Square
 Error in Polar Angles (DRMSP) [3]

Pearson Correlation

$$\rho_{A,B} = \frac{\mathbb{E}[(A - \mu_A)(B - \mu_B)]}{\sigma_A \sigma_B}$$

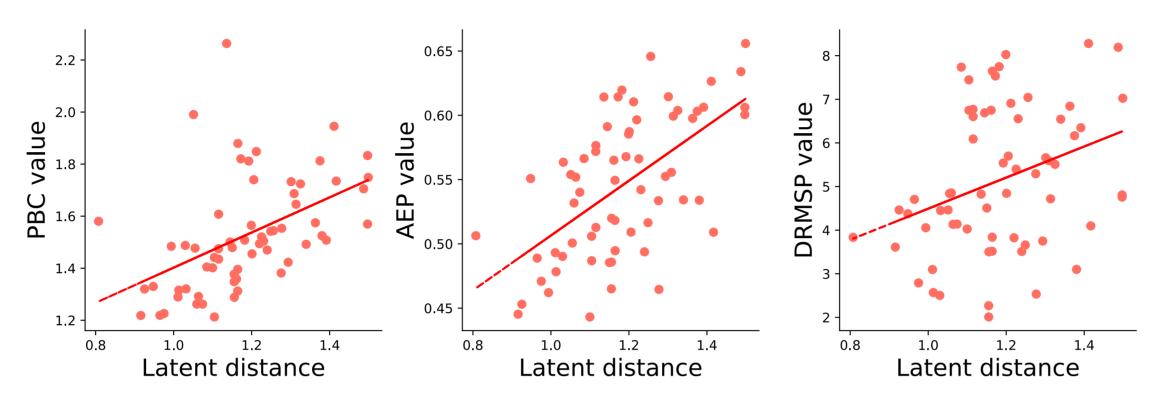
CASE STUDY: Do Existing Learned HRTF Representations Preserve Perceptual Relations?

Dataset: SS2 HRTF dataset [4]

Setup: 1) Learning with spectral reconstruction

- 2) Compute pairwise latent distance across subjects
- 3) Compute pairwise perceptual distance across subjects

Correlation between latent space and the perceptual metrics Model: Implicit Neural Representations; Anchor: one subject



Pearson correlation results for three perceptual metrics

Models	Partitions	PBC	AEP	DRMSP
Convolutional		0.60±0.11	0.71±0.08	0.43±0.13
Autoencoder [5]		-0.15±0.21	0.07±0.31	-0.10±0.27
Implicit Neural		0.60±0.09	0.60±0.14	0.40±0.15
Representations [6]		0.71±0.22	0.55±0.23	0.41±0.27
Correlation with SDE	•	0.78	0.73	0.37

Minimizing spectral distance leads to limited perceptual correlation.

EXPERIMENTS: Improving Latent Representation Alignment with Perception-Informed Space

Comparing Pearson correlation and reconstruction error for the proposed methods and the baseline. PBC metric; Both losses applied; SS2 dataset

		Pearson Correlation ↑			Reconstruction Error				
	Methods	Ground-truth (GT)		Reconstructed		SDE (dB) \downarrow		$PBC\downarrow$	
		train	test	train	test	train	test	train	test
Proposed	$L_2 + L_{Align} + L_{PBC}$	0.93±0.02	0.80±0.14	0.95±0.01	0.86±0.13	0.87	1.58	0.56	1.04
Baseline	L_2	0.60±0.09	0.71±0.22	0.78±0.06	0.80±0.14	0.82	1.51	0.67	1.09
Ablation study	$L_2 + L_{Align}$	0.96±0.01	0.78±0.14	0.87±0.04	0.82±0.13	1.00	1.58	0.79	1.11
	$L_2 + L_{PBC}$	0.64 ± 0.10	$0.71_{\pm 0.21}$	0.77 ± 0.08	0.83±0.17	1.03	1.58	0.64	1.02

- Our proposed method achieves better alignment with perception-informed space.
- The perceptual correlation learned in training transfer to test subjects (unseen).
- L_{Align} and L_{PBC} complement each other, and MMDS supervision (L_{Align}) dominates.

AEP / DRMSP metric; MMDS supervision loss; SS2 dataset

	Methods	Pearson o	SDE (dB)↓		
	mourous	train GT	test GT	train	test
AEP	$L_2 + L_{Align} \ L_2$	0.76±0.09 0.60±0.14	0.67±0.16 0.55±0.23	1.09 0.82	1.65 1.51
DRMSP	$L_2 + L_{Align}$ L_2	0.96±0.02 0.40±0.15	0.70±0.20 0.41±0.27	0.91 0.82	1.74 1.51

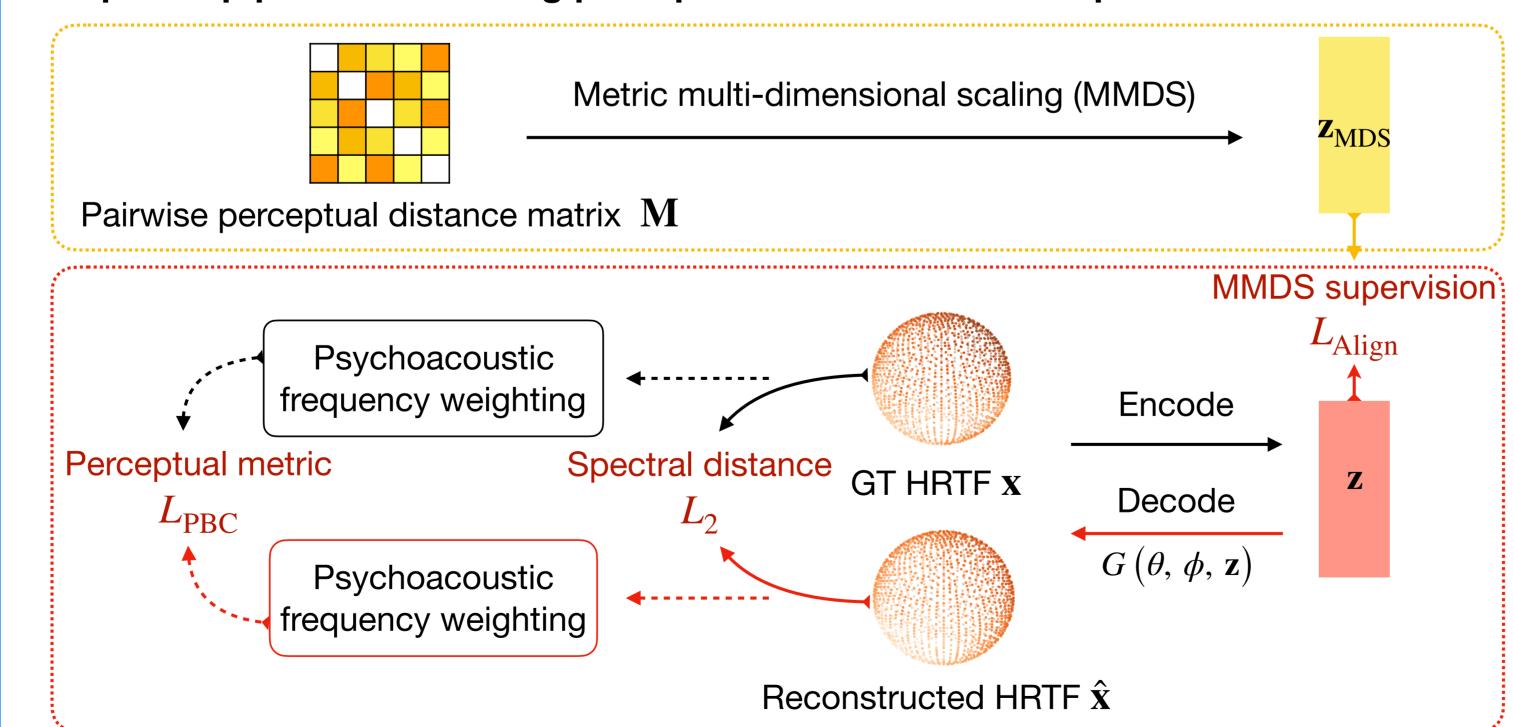
 Our proposed correlation improvement method generalizes to externalization and localization. PBC metric; Both losses applied; HUTUBS dataset

Methods	Pearson o	SDE (dB)↓		
Motriodo	train GT	test GT	train	test
$L_2 + L_{Align} + L_{PBC}$ L_2	0.98±0.01 0.58±0.12	0.71±0.13 0.62±0.14	0.29 0.42	1.60 1.45

 Our proposed correlation improvement method generalizes to HUTUBS dataset.

METHOD: Aligning with Perception-Informed Space

Proposed pipeline of learning perception-informed HRTF representations



Loss functions

$$L = L_2 + \alpha L_{\mathsf{Align}} + \beta L_{\mathsf{PBC}}$$

PBC loss (only when the metrics is differentiable)

$$L_{\mathsf{PBC}} = \mathrm{PBC}(\mathbf{x}, \hat{\mathbf{x}})$$

Metric Multidimensional Scaling (MMDS) supervision (can be applied to every metric)

$$L_{\mathsf{Align}} = \|\mathbf{z} - \mathbf{z}_{\mathsf{MDS}}\|_2$$

APPLICATION: Personalized HRTF Selection

For each of the test (unseen) subjects, we select the nearest HRTFs from the training subjects, based on the learned latent representations.

	Methods	Best c	andidate	Top 5 candidates		
	Motriodo	Metrics↓	SDE (dB)↓	Metrics↓	SDE (dB)↓	
PBC	$L_2 + L_{Align} + L_{PBC}$ L_2	1.21 1.30	2.11 2.07	1.31 1.38	2.17 2.19	
AEP	$L_2 + L_{Align} \ L_2$	0.49 0.48	2.17 2.07	0.50 0.51	2.27 2.19	
DRMSP	$L_2 + L_{Align} \ L_2$	3.20 4.21	2.12 2.07	3.61 4.42	2.26 2.19	

SS2 dataset

Full paper

HRTFs selected by our methods consistently yield lower perceptual distances.

REFERENCES

- [1] McKenzie, Thomas, et al. "Predicting the colouration between binaural signals." Applied Sciences 2022.
- [2] Baumgartner, Robert, and Piotr Majdak. "Decision making in auditory externalization perception: model predictions for static conditions." *Acta Acustica* 2021.
- [3] Barumerli, Roberto, et al. "A Bayesian model for human directional localization of broadband static sound sources." *Acta Acustica* 2023.
- [4] Warnecke, Michaela, et al. "Sound Sphere 2: A high-resolution HRTF database." AES AVAR 2024.
- [5] Zhao, Jiale, Dingding Yao, and Junfeng Li. "Head-Related Transfer Function Upsampling With Spatial Extrapolation Features." *IEEE TASLP* 2025.
- [6] Zhang, You, Yuxiang Wang, and Zhiyao Duan. "HRTF field: Unifying measured HRTF magnitude representation with neural fields." IEEE ICASSP 2023.