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Beyond spectral reconstruction, we learn a
perception-informed HRTF latent space by
preserving perceptual relations among HRTFs.

CASE STUDY: Do Existing Learned HRTF
Representations Preserve Perceptual Relations?

EXPERIMENTS: Improving Latent Representation Alignment with Perception-Informed Space

Comparing Pearson correlation and reconstruction error for the proposed methods and the baseline.

Dataset: SS2 HRTF dataset [4] PBC metric; Both losses applied; SS2 dataset

Setup: 1) Learning with spectral reconstruction
2) Compute pairwise latent distance across subjects
3) Compute pairwise perceptual distance across subjects
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Research question: Methods

- We investigate: how well do existing learned
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Correlation between latent space and the perceptual metrics
Model: Implicit Neural Representations; Anchor: one subject
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* Our proposed method achieves better alignment with perception-informed space.
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* The perceptual correlation learned in training transfer to test subjects (unseen).
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« Lpign and Lpec complement each other, and MMDS supervision ( Laiign) dominates.
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AEP / DRMSP metric; MMDS supervision loss; SS2 dataset
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Proposed solution: PBC metric; Both losses applied; HUTUBS dataset

- Perceptual metric-based loss function

- Supervision via Metric Multidimensional
Scaling (MMDS)
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Pearson correlation results for three perceptual metrics
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Minimizing spectral distance leads to limited perceptual correlation.

Methods
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Application:

HRTF personalization train

test

Implicit Neural
Representations [6]

Correlation with SDE:

* Our proposed correlation improvement
method generalizes to HUTUBS dataset.

Our proposed correlation improvement method
generalizes to externalization and localization.

PRELIMINARIES

Head-related transfer functions (HRTFs) are a
set of functions of frequency at different azimuth and
elevation angles, describing the spatial filtering effect
of the ears, torso, and head onto sound sources.

Full paper

METHOD: Aligning with Perception-Informed Space APPLICATION: Personalized HRTF Selection

Proposed pipeline of learning perception-informed HRTF representations For each of the test (unseen) subjects, we select the nearest HRTFs from the

training subjects, based on the learned latent representations.
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Metric multi-dimensional scaling (MMDS)
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Spectral distance: Spectral Difference Error (SDE)
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Computational Auditory Modeling

» Coloration: Predicted Binaural Coloration (PBC) [1]

- Externalization: Auditory Externalization
Perception (AEP) [2]
Localization: Difference of Root Mean Square
Error in Polar Angles (DRMSP) [3]
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Loss functions

PBC loss (only when the metrics is differentiable)

Metric Multidimensional Scaling (MMDS) supervision (can be applied to every metric)

LPBC — PBC(X, )A()

Lpiign = ||z — zmps||2
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